Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Environ Health Sci Eng ; 21(1): 11-20, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2279227

ABSTRACT

The COVID-19 pandemic has inflicted major economic and health burdens across the world. On the other hand, the potential airborne transmission of SARS-COV-2 via air can deeply undermine the effectiveness of countermeasures against spreading the disease. Therefore, there is an intense focus to look for ways to mitigate the COVID-19 spread within various indoor settings. This work systematically reviewed articles regarding airborne transmission of SARS-COV2 in various indoor settings since the onset of the pandemic. The systematic search was performed in Scopus, Web of Science, and PubMed databases and has returned 19 original articles carefully screened with regard to inclusion and exclusion criteria. The results showed that the facilities, such as dormitories and classrooms, received the most attention followed by office buildings, healthcare facilities, residential buildings, and other potential enclosed spaces such as a metro wagon. Besides, the majority of the studies were conducted experimentally while other studies were done using computer simulations. United States (n = 5), Spain (n = 4) and China (n = 3) were the top three countries based on the number of performed research. Ventilation rate was the most influential parameter in controlling the infection spread. CO2 was the primary reference for viral spread in the buildings. The use of natural ventilation or a combination of mechanical and natural ventilations was found to be highly effective in the studies. The current work helps in furthering research on effective interventions to improve indoor air quality and control the spread of COVID-19 and other respiratory diseases. Supplementary information: The online version contains supplementary material available at 10.1007/s40201-023-00847-0.

2.
Pathol Res Pract ; 231: 153782, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1655042

ABSTRACT

The novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19 outbreak, spread rapidly and infected more than 140 million people with more than three million victims worldwide. The SARS-CoV-2 causes destructive changes in the immunological and hematological system of the host. These alterations appear to play a critical role in disease pathology and the emerging of clinical manifestations. In this review, we aimed to discuss the effect of COVID-19 on the count, function and morphology of immune and blood cells and the role of these changes in the pathophysiology of the disease. Knowledge of these changes may help with better management and treatment of COVID-19 patients.


Subject(s)
Blood Platelets/virology , Erythrocytes/virology , Granulocytes/virology , Monocytes/virology , SARS-CoV-2 , COVID-19/blood , COVID-19/virology , Cell Count , Cell Shape , Humans
3.
PLoS One ; 16(12): e0260360, 2021.
Article in English | MEDLINE | ID: covidwho-1546953

ABSTRACT

Recent emergence of SARS-CoV-2 and associated COVID-19 pandemic have posed a great challenge for the scientific community. In this study, we performed bioinformatic analyses on SARS-CoV-2 protein sequences, trying to unravel potential molecular similarities between this newly emerged pathogen with non-coronavirus ssRNA viruses. Comparing the proteins of SARS-CoV-2 with non-coronavirus positive and negative strand ssRNA viruses revealed multiple sequence similarities between SARS-CoV-2 and non-coronaviruses, including similarities between RNA-dependent RNA-polymerases and helicases (two highly-conserved proteins). We also observed similarities between SARS-CoV-2 surface (i.e. spike) protein with paramyxovirus fusion proteins. This similarity was restricted to a segment of spike protein S2 subunit which is involved in cell fusion. We next analyzed spike proteins from SARS-CoV-2 "variants of concern" (VOCs) and "variants of interests" (VOIs) and found that some of these variants show considerably higher spike-fusion similarity with paramyxoviruses. The 'spike-fusion' similarity was also observed for some pathogenic coronaviruses other than SARS-CoV-2. Epitope analysis using experimentally verified data deposited in Immune Epitope Database (IEDB) revealed that several B cell epitopes as well as T cell and MHC binding epitopes map within the spike-fusion similarity region. These data indicate that there might be a degree of convergent evolution between SARS-CoV-2 and paramyxovirus surface proteins which could be of pathogenic and immunological importance.


Subject(s)
SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Fusion Proteins/genetics , Epitopes/genetics , Humans , Paramyxoviridae/genetics , Phylogeny , Protein Structure, Tertiary , Spike Glycoprotein, Coronavirus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL